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A MIMD Implementation of a Parallel Euler
Solver for Unstructured Grids

V. Venkatakrishnan 1, Horst D. Simon 1 ,

and Timothy J. Barth 2

Abstract

A mesh-vertex finite volume scheme for solving the Euler equations on triangular unstruc-
tured meshes is implemented on an MIMD (multiple instruction multiple data stream) parallel
computer. Various partitioning strategies for distributing the work load on to the processors
are discussed. Issues pertaining to the communication costs are also addressed. Finally, the
performance of this unstructured computation on the Intel iPSC/860 is compared with that of
a one processor Cray Y-MP, and with an earlier implementation on the Connection Machine.

1 Introduction

There has been a surge of activity in the area of parallel computing in the last few years. Parallel

computers are becoming more accessible and many significant application programs have been
successfully implemented. Many of the applications to date, however, have dealt with structured

meshes which have a good deal of regularity in accessing data. This also facilitates the partitioning

of the data and of the computation.

Triangular meshes have become quite popular in computational fluid dynamics. They are

ideally suited for handling complex geometries and for adapting to flow features, such as shocks

and boundary layers. Considerable attention has been focussed on improving the spatial operator,

which has evolved to a very high degree of sophistication for the Euler and Navier-Stokes equations.

Parallel computers seem to offer an avenue for doing large problems very fast due to their scalability.

Before this goal can be realized, however, many fundamental issues need to be addressed. In the

case of unstructured mesh computations, some of the issues that arise are the partitioning of the

data and the computation among processors, communication at the inter-partition boundaries and

dealing with global data addresses. Massively parallel computers have evolved to a degree that we

feel it is the appropriate time to compare the best performances that one can obtain with these

machines against conventional supercomputers.

Williams[l] has addressed the problem of doing unstructured mesh computations on an MIMD

parallel computer. Here the solution is computed first on one node using a coarse grid which is

then adaptively refined while distributing the load and the data to multiple processors as and when

necessary. In practice, however, one has to compute the solution on a given grid and furthermore, it

may not be feasible to generate a coarse grid for complex configurations in three dimensions which

will fit on one processor. We address here the problem of computing on a given grid which does not

fit in one processor. In the implementation discussed here, no hierarchy of processors is assumed.

Each processor receives about the same amount of data and performs nearly the same amount of

computation. The amount of communication that a processor performs is only a function of the

data partitioning strategy for a given numerical scheme.
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Ames Research Center, Moffett Field, CA 94035. The author is an employee of Computer Sciences Corporation. This
work was funded under contract NAS 2-12961.
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In this paper,wediscussanexplicit upwindfinite-volumeflow solverfor the Eulerequations
in two dimensionsthat is wellsuitedfor massivelyparallelimplementation.Weidentify aspectsof
the problemwhichneedto beexaminedin detailin orderto obtaingoodperformance.Wediscuss
variouswaysofpartitioningthegridandassesstheirimpactonperformance.Wealsoderiveefficient
datastructuresandschedulesof messages.Wepresentdetailedperformancecomparisonsof this
codeon the Intel iPSC/860againstotherimplementations.This solverhasbeenimplementedon
the CrayY-MP by Barth andJespersen[2]andon the CM-2 by HammondandBarth [3].

2 Governing Equations and Discretization

The Euler equations in integral form for a control volume fl with boundary 0fl read

]0-_ u dv --k F(u,n) dS = O. (1)

Here u is the solution vector (the conserved variables density, the two components of momentum

and total energy). The vector .F(u_ n) represents the inviscid flux vector for a surface with normal

vector n. Eqn. (1) states that the time rate of change of the variables inside the control volume is

the negative of the net effiux of the variables through the boundaries of the control volume. This

net effiux through the control volume boundary is termed the residual. In the present scheme the

variables are stored at the vertices of a triangular mesh. The control volumes are non-overlapping

polygons which surround the vertices of the mesh. They form the "dual" of the mesh, which is

composed of segments of medians. Associated with each edge of the original mesh is a (segmented)

dual edge. The contour integrals in Eqn. (1) are replaced by discrete path integrals over the

edges of the control volume. Fig. 1 illustrates a sample triangulation. The shaded region is the

control volume associated with vertex P. A piecewise linear variation is assumed within each control

volume. In order to compute this variation, the values as well as the gradients of the variables at

the vertices are required. The gradients are also computed as discrete path integrals over the

edges of the control volume by making use of Green's theorem. The formation of the residual at a

vertex then involves information consisting of values and gradients from its distance 1 (immediate)

neighbors, and the gradients at the neighbors in turn utilize values from their distance 1 neighbors.

Thus, a vertex is influenced by its distance 1 and distance 2 neighbors. A distance 1 neighbor of a

vertex is defined as a vertex which is connected to the chosen vertex by an edge of the triangular

mesh. Vertices i and j are distance 2 neighbors if the shortest path between them comprises of two

edges. Fig. 1 also illustrates the stencil associated with a vertex which consists of both distance 1

and distance 2 neighbors.

A four stage Runge-Kutta scheme is used to advance the solution in time. The path integrals

are evaluated by looping over the edges of the original mesh. For the parallel implementation we

assume that the triangulation of the computational domain and the mesh connectivity information

are provided.

3 MIMD Implementation

In this section we examine in detail a number of issues that are crucial to obtaining good perfor-

mance with the unstructured grid solver. The main steps involved are:

• partitioning of the grid

• generating local data structures



• embeddingonto the hypercube topology

• generating a communication schedule

The static partitioning and the transformation of the global data set into local data sets are currently

done as pre-processing steps on a workstation.

3.1 Partitioning of the grid

In this subsection we address the problem of partitioning unstructured triangular meshes. When

using piecewise linear reconstruction, the calculation of the residual at a vertex vertex depends on

information not only from its distance 1 neighbors, but also its distance 2 neighbors (Fig. 1). Thus,
at first glance, it would appear that we need an overlap between the sub-domains. Recalling the

discussion in the previous section, a vertex receives information from its distance 1 neighbors in

two stages: calculation of the gradients and evaluation of the path integrals in forming the residual.

Therefore, abutting sub-domains (with no overlap) will suffice. We also choose to partition the

triangles (as opposed to vertices), so that the inter-partition boundaries consist of edges of the

original triangular mesh. The reason for this choice is discussed later in the text. In Fig. 1, an

inter-partition boundary is shown by a thick line. The inter-partition boundary edges and the

corresponding inter-partition boundary vertices (IBVs) are thus duplicated. Two communication

phases are then required at each stage of the four stage Runge-Kutta time integration, one during

the computation of the gradients and the other, during the formation of the residuals.

Since we are interested in partitioning triangular grids, we consider the centroidal dual mesh as

the undirected graph for the partitioning problem, which is composed of lines joining the centroids

of the triangles. Fig. 2a shows a triangulation and Fig. 2b shows the corresponding centroidal

dual; each vertex in Fig.2b corresponds to a triangle in Fig. 2a. Following Kernighan and Lin

[4], the graph partitioning problem is defined as follows. Let T = (V, E) be a graph of n nodes,

with sizes (weights) w_ > 0, i = 1,...,n. Let C = (cij),i,j = 1,...,n be a weighted connectivity

matrix describing the edges of T. Let k be a positive integer. A k-way partition of T is a set of

vl, .... , vk of nonempty, palrwise disjoint subsets of T, such that [.J_=l v_ = T. The cost of a partition

is the summation of c_j over all i and j such that i and j are in different subsets. In the present

application, all the weights are chosen to be unity.

Partitioning is done recursively starting with the problem of dividing one domain into two almost

equal sub-domains. The number of triangles in the two sub-domains differs at most by one. The

amount of computation in a sub-domain is mainly a function of the total number of edges, which is

linearly related to the number of triangles and the Ilumber of vertices by Euler's formula for planar

graphs [5]. Therefore, computational load balance is assured by this strategy if the perimeters of

the sub-domain boundaries are uniform across all partitions. The various partitioning strategies

only differ in the way one domain is divided into two sub-domains. Below we present the key

features of three partitioning algorithms that have been employed. Further details may be found

in Simon [6].

The first of the three techniques, termed coordinate bisection, makes use of the coordinate
information associated with each vertex in the centroidal dual. The coordinates are then sorted

in a particular coordinate direction (either x or y); one half of the ordered vertices define the first

partition and the remaining vertices define the second partition. The second technique derives

the partitions from the Reverse Cuthill-McKee (RCM) algorithm, which is a popular reordering

technique in the direct solution of sparse matrices. This algorithm has a wavefront property and

defines level sets, which represent the neighbor lists starting with a root, neighbors of the root,

neighbors of neighbors of the root etc. The two partitions are defined when one half of the domain
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hasbeentraversed.Thethird techniqueis basedon the spectralpartitioningalgorithmof Pothen
et al.[7]. Their algorithminducesthe partitionsfrom theeigenvectorcorrespondingto the second
smallesteigenvalueof the Laplacian matrix associated with the graph. They have shown that the

separators produced by this algorithm are shorter than those produced by RCM and nested dissec-

tion. A separator is a set of nodes which subdivides the original connected graph into two disjoint

subgraphs. Separators control the fill-in that occurs during the factorization of sparse matrices,

but in the present context, separators are of interest since they form the inter-partition bound-

aries. Simon [6] has applied these three partitioning algorithms to a variety of two-dimensional and

three-dimensional problems, arising from finite elements and has shown that the spectral technique

yields better partitions in that it produces sub-domains with shorter boundaries. He has observed

that the coordinate bisection technique leads to disconnected partitions, thereby greatly increasing

the lengths of the boundary segments. Disconnected partitions also have the undesirable effect of

increasing the number of adjacent partitions and each adjacent partition requires a message to be

generated. Therefore, disconnected partitions imply higher start-up and transmission costs. The

RCM technique produces partitions with long boundaries since it uses a breadth-first search to

define the level sets. The spectral technique produces uniform, mostly connected sub-domains with

short boundaries. Theoretical results by Fiedler (summarized in [7]) show that one of the two

sub-domains formed by the spectral partitioning is always connected. Spectral partitioning results

in fewer shorter messages and reduced communication cost.

We have two variants of the partitioning strategies based on each of the three techniques outlined

above. The two variants are referred to as domainwise and stripwise decompositions. These are most

easily explained by referring to the coordinate bisection strategy. In the domainwise decomposition,

the direction in which the sorting of coordinates is performed is switched to be the longer of the

coordinate directions during the recursive procedure. This technique is identical to the orthogonal

bisection of Williams [1]. In the stripwise decomposition, this direction is fixed throughout the

partitioning procedure to be the longer of the two coordinate directions in the original graph.

The domainwise decomposition produces partitions which have more neighboring sub-domains and

shorter boundaries and the stripwise decomposition produces thin, long partitions which have

fewer neighboring sub-domains but longer boundaries. In the implementation of the flow solver on

a parallel computer, the two variants have the obvious effects of requiring more short messages and

fewer long messages, respectively. In the case of the RCM, strips are formed by just partitioning

the level sets for the initial graph i.e. the RCM is not carried out recursively. Similarly, for the

spectral partitioning, the strips are formed by sorting the entries of the eigenvector corresponding

to the initial graph and inducing the required number of partitions.

Figs. 3a,3b and 3c show eight-way domainwise partitions and Figs. 4a,4b and 4c show stripwise

decompositions for a mesh around a four element airfoil. The inter-partition boundaries are shown

by the thick lines in these figures. In Fig. 3a shows an eight-way partition obtained with the do-

mainwise coordinate bisection technique. Fig. 3b and Fig. 3c show the domalnwise decompositions

obtained using the RCM and the spectral partitioning strategies, respectively. We observe from

Fig. 3a, that even with only eight partitions, there are instances where the sub-domains degen-

erate to zero thickness. This is a direct consequence of the variable density of the grid within a

rectangular coordinate strip and leads to disconnected domains for larger number of partitions. In

Fig. 3b, we see that the partitions produced by RCM have long boundaries and are connected, but

as the number of partitions increases, we have observed that the partitions become disconnected.

In Fig. 3c, we notice that the partitions produced by the spectral technique are compact and this

property seems to hold even as the number of partitions is increased. Figs. 4a, 4b and 4c show the

stripwise decompositions achieved using the coordinate bisection, ttCM and the spectral techniques,

respectively. The domainwise and stripwise decompositions are characterized and compared in the



section on performance.

Finally, we observe that that the communication occurs across the shared vertices and not

edges. For instance, two sub-domains which only meet at a vertex and do not share an edge,

have to communicate. Therefore, the true communication graph, which describes the message

pattern more accurately, is not the dual shown in Fig. 2b, but that shown in Fig. 2c. This

graph consists of cliques corresponding to the degree of each vertex. We employ the RCM and the

spectral partitioning strategies discussed above to this graph as well. This graph is dense and makes

the partitioning schemes more computationally intensive. Note that the coordinate bisection only

makes use of the physical coordinates and hence is not affected by the choice of the dual graph.

The execution times for the coordinate bisection, ttCM and spectral techniques for a mesh with

15606 vertices on a Silicon Graphics workstation (Iris 4D/70) are 4 seconds, 3 seconds and 1750

seconds. The spectral technique is thus quite expensive. However, on a vector computer such as

the Cray Y-MP, the performance of the spectral technique improves considerably because matrix

vector products can be vectorized. Carrying out a number of flow simulations on the same grid

also amortizes the preprocessing cost, since the partitioning needs to be done just once.

We conclude this subsection by observing that the optimal partitioning of the triangular mesh

which reduces the communication time is a difficult problem. The communication time for sending

a message is a function of the start-up cost and the message length. Therefore, the total communi-

cation time is governed by the start-up costs (equal to the number of adjacent partitions) and the

transmission costs (proportional to the number of IBVs). The domainwise partitioning strategies
attempt to reduce the transmission costs and the stripwise partitioning strategies attempt to reduce

the start-up costs. To achieve truly optimal partitions, the timing model (given later) has to be

included in the partitioning procedure. It is beyond the scope of this paper to address this problem.

3.2 Data structures

The information required for communication at the inter-partition boundaries is precomputed using

sparse matrix data structures. Neighboring subgrids communicate to each other only through their

IBVs (defined earlier) which are shared by the processors containing the neighboring subgrids.

In the serial version of the scheme, field quantities (mass, momentum and energy) are initialized

and updated at each vertex of the triangular grid by computing the residuals. In the parallel

implementation, each processor performs the same calculations on a subgrid as it would do on the

whole grid in the case of a serial computation. The difference is that now each subgrid may contain

both physical boundary edges and inter-partition boundary edges, which have resulted from grid

partitioning. The communication at the inter-partition boundaries consists of summing the local

contributions to integrals such as volumes, fluxes, gradients etc. The data structures facilitate
communication across the inter-partition boundaries in a general manner. The data structures for

each processor consist of:

nadjproc - no. of adjacent processors

iadjproc - list of adjacent processors - length nadjproc

ibv - pointers to the cumulative number of IBVs in common with the adjacent processors - length

nadjproc-bl

nbv - number of boundary vertices in common with processor iadjproc(i). This can be derived

from ibv and is not stored, nbv(j) = ibv(j÷l) - ibv(j)

nintbv(.,1) - Local indices on current processor- length ibv(nadjproc+l)-I
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nintbv(.,2) - Local indices on adjacent processor- length ibv(nadjproc+l)-i

We illustrate these data structures by referring to Fig. 5 which shows an eight-way partition of a

domain. Only the IBVs and the shared edges are shown for the sake of clarity. They comprise the

inter-partition boundaries. Each processor contains only the data that it needs for communication.

The arrays take on the following values for processor 0:

nadjproc - 7

iadjproc - 1, 6, 7, 2, 4, 3, 5

ibv - 1, 7, 12, 13, 14, 15, 21, 25

nbv - 6, 5, 1, 1, 1, 6, 4

Note that sub-domains are adjacent even if they share only one vertex and no edges e.g. sub-
domains 0 and 4.

After the application of the partitioning algorithms, the whole finite volume grid made up of

triangular cells is partitioned into a number of subgrids equal to the number of processors. Each

subgrid contains an almost equal number of triangular cells which may or may not form a single

connected region. After partitioning, global values of the data structures required to define the

unstructured grid are given local values within each partition. We thus dispense with any references

to global indices. Additionally, each local data set contains the information a partition requires for

communication at its inter-partition boundaries. Each subgrid is assigned to one processor. Below,

we argue that the assignment of partitions to processors is not a crucial issue in the case of the

Intel iPSC/860.

3.3 Embedding onto the iPSC/860

An embedding of a graph G onto the a graph H is a one-one assignment of a vertex in G to a vertex

in H. We have utilized two embedding schemes, one of which is a random embedding and the

other is a naive embedding wherein partition 0 is assigned to processor 0, partition 1 is assigned

to processor 1 and so on. There is little observable difference in performance between the two

assignments. We define a partition communication graph as an undirected graph, where every edge

represents the communication link between two neighboring partitions. Fig. 6 shows the partition

communication graph corresponding to the decomposition shown in Fig. 5.

A near-o_timal assignment of partitions to processors is an embedding of this graph G onto

the hypercube graph H that minimizes the dilation cost, which is defined as the the maximum

distance in H between the images of vertices that are adjacent in G [8]. The maximum degree of a

vertex in the partition communication graph is arbitrary and is generally greater than the degree

of a node in the hypercube. For example, it is shown in the section on performance that with

spectral partitioning on the centroidal dual, we obtain a maximum degree of 12 with 64 processors.

A near-optimal embedding (using heuristics) entails a dilation cost of at least 2, whereas a random

assignment on average leads to a value of 3 for this graph.

The time (in #secs.) to communicate a message of length m bytes over a distance d hops on

the iPSC/860 is given by (cf. [9])

t = 95+ 10.3d+0.394m

t = 95+ 10.3d+0.394m

t = 164+29.9d+0.398m

FORCED messages

UNFORCED messages for 0 < m < 100

UNFORCED messages for m > 100

(2)



In the present two-dimensional code, if we have n vertices and P processors, the average length of an

inter-partition boundary is roughly v_P. In the present implementation, the gradient calculation

for instance, requires 72 bytes of data per IBV, so that m assumes a value of 72_. In our large

problem, n = 15606 and P = 64 and m is roughly 1124 bytes. It is easy to verify that even for

this problem on 64 processors, a near-optimal embedding, with a dilation cost of 2, yields only an

improvement in communication time of 2% over the random embedding using FORCED message

type. Since the communication time is 33% of the whole computation for this problem (see the

Results section), the overall improvement is less than 1%. Thus, for even relatively short messages,

a near-optimal embedding only yields a small improvement over a random assignment of partitions

to processors. Therefore, we have not utilized other embedding strategies, such as Gray coding

after coordinate bisection etc. since we expect the performance gain to be minimal.

3.4 Communication

We now address the issue of efficient communication. We derive a scheduling algorithm so that

the messages which need to be sent are scheduled with minimum conflict. The schedule we derive

is most easily explained by referring to Fig. 6. The scheduling algorithm consists of coloring the

edges of the partition communication graph. This algorithm permutes the adjacency sub-domain

indices (iadjproc) associated with each processor to produce "pairwise exchanges". The coloring

of the edges has the property that the number of colors is equal to either the maximum degree of

a vertex or the maximum degree plus 1. Therefore, the number of "stages" taken for the entire

communication is equal to the number of messages (÷1) required by the processor that has to

communicate the most. A "stage" here is defined as the step in the communication when processor

pairs can communicate without interference from other processors. We show in Table 1 the original

adjacency processor list and in Table 2, the schedule for partition communication graph of Fig. 6.

Each column in Table 2 represents a stage. In each column, the processors are so arranged that

they can communicate exclusively with one of their neighbors. In the fourth column, for example,

processors 0 and 2, 1 and 7, 3 and 5 communicate, while processors 4 and 6 idle. We do not

enforce explicit synchronizations at the end of every stage, so that the stages shown in Table 2

are for the purpose of clarity only. We can omit the schedule completely and post asynchronous

receives (IRECV) for all the messages that a processor expects to receive and provide buffers for

each of these messages. However, this approach leads to a considerable waste of memory, does not

utilize the concurrent communication facility of iPSC/860 and thus limits performance. Organizing

the messages into pairs also enables us to utilize the concurrent bidirectional communication on

the Intel iPSC/860. Following Seidel et al. [10], this is done by the synchronization of a pair of

processors which is accomplished by exchanging zero byte messages.

Two qualifications need to be made regarding the optimality of the schedule described above.

First, the schedule does not guarantee the absence of wire contentions at any stage of the com-

munication in Table 2. Wire contentions inhibit the concurrency of the scheduled messages and

lead to sub-optimal communication times. The Intel iPSC/860 uses the the e-cube routing algo-

rithm for communication between two processors ([9]), so that the path between two processors

is deterministic. Schedules have been derived for simpler communication patterns, such as a com-

plete exchange, which avoid link contentions (see [9] and [10]), but are quite difficult to derive for

general graphs. Second, the schedule is optimal only under the assumption that the start-up cost

dominates the transmission cost or that the message lengths are uniform across all the processors.

When the message lengths are disparate, the schedule does not ensure that the communication

time is minimized over all possible schedules. This is a difficult problem since we have to account

for delays due to varying message lengths in the schedule and we do not it pursue it further.



• - Distance1(immediate)neighborsof vertexP

• - Distance2neighborsofvertexP
Figure1. Controlvolumeand stencil for vertex P.

Table 1: Adjacency processor list for the sample problem.

Processor iadjproc

3 50

1

2

3

4

5

6

7

1 6 7 2 4

2 0 7 3 6

3 1 0 4 7

4 2 0 5 1

5 3 0 2

0 3 4 6

5 7 0 1

1 0 6 2

Table 2: Communication Schedule.

Processor Permuted iadjproc
50

1

2

3

4

5

6

7

1 6 7 2 4 3

0 2 3 7 6

3 1 4 0 7

2 4 1 5 0

5 3 2 0

4 - 6 3

7 0 5 1

6 0 1 2
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Figure 2(b). Dual grid.
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Figure3(a). Domainwisedecompositionusingcoordinatebisection.
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Figure 3(c). Domainwise decomposition using spectral technique.
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We now discuss the reason for partitioning triangles and not vertices. We show that there is

a duality between the two choices and partitioning triangles is a better choice for the iPSC/860.

The following discussion pertains to the communication required for the formation of the residual.

When partitioning triangles, the inter-partition boundary consists of the edges of the triangular

mesh as shown in Fig. 1 for a sample triangulation. One two-way message is required for every

shared vertex in order to compute the contribution to a path integral and the total message length

is directly proportional to the number of shared vertices. When partitioning vertices, the inter-

partition boundary consists of the edges of the dual mesh. It is shown in Fig. 7 as a thick line for

the same triangulation. Communication is required at the time of computation of the fluxes. The

formation of the residual (the discrete path integral) itself requires no communication. Hammond

and Barth [3] advocate the use of a vertex partitioning strategy for implementation on a Connection

Machine. In their strategy, the flux computation at the inter-processor boundary is performed by

one of the processors. This processor sends one message to receive the data from the neighbor,

computes the flux and sends back the flux information. It thus requires two one way messages. For a

fine-grained parallel computer, this approach is advantageous (since each processors is assigned one

vertex). The Intel iPSC/860 is a medium grained parallel computer that is capable of bidirectional

communication. If we duplicate the flux calculation at the boundary (which is not a severe penalty

on a medium grained computer), the communication consists of one two-way message which can

make use of the bidirectional communication on the Intel iPSC/860. However, the total message

length is proportional to the number of cut edges i.e. edges with one vertex in each processor. The

number of cut edges is always greater than the number of shared vertices for triangular meshes

(typically twice). Therefore, partitioning triangles is better than partitioning vertices, since it

entails shorter messages. In three dimensions, the number of cut edges for tetrahedral meshes

is even greater (typically three times the number of shared vertices) and we expect partitioning

tetrahedra to be superior to partitioning vertices.

4 Performance on the Intel iPSC/860

We consider a subcritical flow past a four element airfoil in landing configuration with a freestream

Mach number Moo = 0.1, and angle of attack of 5 °. Performance results are presented for two

problem sizes that are representative for two-dimensional inviscid flows. The coarse mesh has

6019 vertices, 17473 edges, 11451 triangles, 4 bodies and 593 boundary edges. The fine mesh

has 15606 vertices, 45878 edges, 30269 triangles, 4 bodies and 949 boundary edges. In the Cray

implementation, vectorization is achieved by coloring the edges of the mesh. More details may be

found in [2]. The fully vectorized code for this test case runs at 150 Mflops on a single processor

of the NAS Cray Y-MP at NASA Ames, and requires 0.15 seconds per time step for the smaller

grid and 0.39 seconds per time step for the larger grid. The performance of the code on the Intel

iPSC/860 is given in Table 3. Table 3 represents the performance results from the best of our

efforts for the two problem sizes. These results are from using the domainwise spectral partitioning

based on the centroidal dual, the schedule, the bidirectional communication capabilities of the

iPSC/860 and Fortran compiler optimizations. The effects of the various optimizations outlined in

the previous sections are examined in detail in the following. The Mflops numbers in this section

are based on operation counts using the Cray hardware performance monitor, i.e. are based on

the operation count for a vectorized implementation. Since the larger problem does not fit in one

processor of the iPSC/860, the efficiency is computed based on the formula:

Efficiency(%) = (Mflops with N procs) / [ N * 4.6 ]*100. where 4.6 Mflops is the performance

of one processor of iPSC/860 on the smaller problem.
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Figure5. Decompositionintoeight partitions.

Figure6. A Partition CommunicationGraph.

Figure7. Inter-partitionboundaryfor the partitioningof vertices
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Thenumbersin Table3 showthat with 128processorsontheiPSC/860using64-bitarithmetic,
weareableto obtain slightly morethan twicethe performanceof a singleprocessorof the Cray
Y-MP.It alsoshowsthat theperformanceofthecodeonasingleprocessorof theiPSC/860isabout
4.8Mflops,considerablylessthat the advertisedpeakspeed"of this processorof 60Mflops.A third
point to notefrom Table3is that for afixedproblemsize,theefficiencydecreasesasthenumberof
processorsis increasedandthat for thesamenumberof processorsthe performanceimproveswith
increasingproblemsize.Howeverneitherofthesetrendsisuniform(dueto cacheeffects).Thebest
performancesof the codeon the iPSC/860for the two problemsareshowngraphicallyin Fig. 8.
Theidealcurveis determinedby assuming4.8Mflopsperprocessorandnocommunication.There
is sufficientmemoryon theiPSC/860to run muchlargerproblemssincetwoprocessorsareenough
to solvetest case2.

Thevariouspartitioningstrategiesarecomparedin Tables4and5. In Table4, theresultsfrom
domainwisepartitionsareshownandin in Table5, resultsfrom stripwisepartitionsareshown.In
both tablesthe resultsderivedfrom applyingthe partitioning techniquesto both the centroidal
dual and the true communicationgraph(describedin section3.1)areshown.All the resultsare
shownfor the largerproblemwith the numberof processorsfixedat 64. The tablespresentthe
total time takenper time step,the time spentin communicationaloneand the Mflop rates. The
timesshownarethe maximumsacrossall processors.Wecanalsocharacterizethe efficacyof the
partitioning methodsby the averagenumberof neighboringpartitionsand the total numberof
sharedboundaryvertices(whichrepresentsthe perimeterof the sub-domainboundaries).It is
seenthat the spectralpartitioningbasedon the centroidaldualproducesthe shortestperimeterof
the sub-domainboundaries.The communicationtime is determinedby the processorthat hasto
communicatethemost.Therefore,wealsocharacterizethepartitioningsbytwoothermeasures,the
maximumoverall partitionsofthenumberof adjacentpartitions(nadjproc)andofthetotal number
of IBVs that a partition has.Thesetwo measuresrepresentthemaximumoverall processorsof the
total numberof messagesthat needto be sentandthe total lengthof themessages,respectively.
Recall that IBVs are duplicatedif sharedby more than two processors.Spectralpartitioning
requiresfewer,shortermessagesas comparedto the coordinatebisectionand RCM strategies.
Table4 also showsthat there is little to be gainedfrom usingthe true communicationgraph
for domainwisepartitioning. The table showsthat the choiceof the partitioning schemehasa
considerableimpacton the communicationtime, andthus in theeffectiveMitoprating.

We alsoattemptedto reducelatency by usingstripwisedecompositionswhichtry to reduce
the numberof neighboringsub-domainsand consequently,the messagestartup costs. With the
spectralandthe RCM techniquesweusethe true communicationgraphaswellasthe centroidai
dual to achievestripwisedecompositions.Weexpecttheuseof thetrue communicationgraphto be
crucialin reducingthenumberof neighborsandTable5seemsto confirmthis. In examiningTable
5, wenoticethat both the averagenumberof neighborsandthe maximumnumberof neighbors
dodecrease,especiallywith the true communicationgraph,but at theexpenseof vastlyincreased
messagelengths. Usingthe RCM partitioning strategywith the true communicationgraphleads
to a maximumof only4 neighbors,but thetotal messagelengthhasincreasedmorethan fivefold.
The resultis that the communicationtime is aboutfour timeswhatweachieveusingdomainwise
spectralpartitioning. We alsoobservein Table5 that usingthe true communicationgraphwith
stripwisespectraldecompositionalsoleadsto poor communicationtimes. We concludethat on
the iPSC/860it is still desirableto reducethe numberof startups,but in sucha way that the
perimetersof the boundariesare not greatly increased.In examiningTables4 and 5 we also
observethat someof the schemesexhibit differingcomputationtimes(differencesbetweentotal
and communicationtimes). This is mainly dueto the computationalloadimbalancecausedby
havingdisparatesub-domainboundaryperimeters.Sincethe variouspartitionshavenearly the
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Table3: Performance of Unstructured Grid Code on the Intel iPSC/860.

Procs

1

2

4

8

16

32

64

128

Y-MP

small grid large grid

secs/step Mflops I efficiency II secs/step I Mfl°PS efficiency
4.86

3.05

1.31

0.71

0.41

0.25

0.17

0.13

0.15

4.6

7.4

17.1

31.6

54.9

90.0

132.4

173.1

150

100

8O

93

86

74

61

45

29

7.39

3.70

1.94

1.08

0.59

0.31

0.19

0.39

7.9

15.8

30.2

54.1

99.2

187.5

307.9

150.0

86

86

82

74

67

64

52

Table 4: Performance of domainwise partitioning algorithms.

No. of vertices = 15606, No. of processors = 64

Centroidal dual

Coordinate RCM Spectral
0.39 0.43 0.31

150 136 189

0.15 0.19 0.08

6.7 7.4 4.5

2528 3117 1766

14 18 12

175 255 99

Seconds/time step

Mflops

Comm. time (secs.)

Average # of neighbors

Total # of shared vertices

Max. # of neighbors

Max. # of IBVs

True comm. graph

RCM Spectral

0.37 0.33

158 177

.13 0.10

6.7 4.5

2425 1756

15 4

147 109

Table 5: Performance of stripwise partitioning algorithms.

No. of vertices = 15606, No. of processors = 64

Centroidal dual

Coordinate

Seconds/time step

Mflops

Comm. time (secs.)

Average # of neighbors

Total # of shared vertices

Max. # of neighbors

Max. # of IBVs

0.69

85

0.46

23.2

4997

35

390

True comm. graph

RCM Spectral RCM Spectral
1.12 0.45 0.61 0.45

52 130 96 130

0.65 0.16 .35 0.18

3.8 3.6 2.7 3.5

13235 6012 12344 6101

6 6 4 6

1389 356 516 349

Table 6: Performance Comparison across Architectures

Machine Processors secs/step Mflops

Cray Y-MP 1 0.39 150.0

Intel iPSC/860 64 0.31 187.5
128 0.19 307.9

CM-2 (32 bit) 8192 0.45 130.0
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PERFORMANCE OF THE UNSTRUCTURED GRID CODE

600

400-
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- 4- - 6019 vertices
• ..A... 15606 vertices

-.--, Cray YMP-1

• ..............'.'.'.
l•.............

200 ........... . 2"

0 _
0 50 100 150

No. of processors (iPSC/860)

Figure 8. Parallel performance of the unstructured grid code on the iPSC/860
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samenumberof triangles,disparateboundaryperimetersleadto differingnumber•Ofverticesand
edgesin variouspartitions;andthesearedirectlyrelatedto amountof computation.

By implementingthe schedulingalgorithmandbyforcingpairwiseexchangesin a prescheduied
manner,asdiscussedearlier,weobtainedalmosta factor of three improvementin performance
overa naiveimplementation.Thenaiveimplementationhererefersto havingrandomadjacency
processorlists (iadjproc) andusingsynchronizedsends(CSEND)andreceives(CRECV).

5 Conclusions

The performance figures for the unstructured grid code are summarized in Table 6 across three

different computers, where all Mflops numbers are Cray Y-MP equivalent numbers. The CM-2 per-

formance numbers are from [3]. The numbers in Table 6 show that current parallel supercomputers

yield approximately 1-2 times the performance of a single processor Cray Y-MP for typical inviscid

problems on unstructured meshes.

We have thus demonstrated in our work that an explicit unstructured flow solver can be im-

plemented on a MIMD machine, and that supercomputer performance can be obtained. We also

demonstrated the successful use of a new partitioning strategy for unstructured computations.

Finally our work shows that a careful implementation of message passing is critical, even for an

explicit code.
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